899 research outputs found

    MathSBML: a package for manipulating SBML-based biological models

    Get PDF
    Summary: MathSBML is a Mathematica package designed for manipulating Systems Biology Markup Language (SBML) models. It converts SBML models into Mathematica data structures and provides a platform for manipulating and evaluating these models. Once a model is read by MathSBML, it is fully compatible with standard Mathematica functions such as NDSolve (a differential-algebraic equations solver). Math-SBML also provides an application programming interface for viewing, manipulating, running numerical simulations; exporting SBML models; and converting SBML models in to other formats, such as XPP, HTML and FORTRAN. By accessing the full breadth of Mathematica functionality, MathSBML is fully extensible to SBML models of any size or complexity. Availability: Open Source (LGPL) at http://www.sbml.org and http://www.sf.net/projects/sbml. Supplementary information: Extensive online documentation is available at http://www.sbml.org/mathsbml.html. Additional examples are provided at http://www.sbml.org/software/mathsbml/bioinformatics-application-not

    Analysis of cell division patterns in the Arabidopsis shoot apical meristem

    Get PDF
    The stereotypic pattern of cell shapes in the Arabidopsis shoot apical meristem (SAM) suggests that strict rules govern the placement of new walls during cell division. When a cell in the SAM divides, a new wall is built that connects existing walls and divides the cytoplasm of the daughter cells. Because features that are determined by the placement of new walls such as cell size, shape, and number of neighbors are highly regular, rules must exist for maintaining such order. Here we present a quantitative model of these rules that incorporates different observed features of cell division. Each feature is incorporated into a “potential function” that contributes a single term to a total analog of potential energy. New cell walls are predicted to occur at locations where the potential function is minimized. Quantitative terms that represent the well-known historical rules of plant cell division, such as those given by Hofmeister, Errera, and Sachs are developed and evaluated against observed cell divisions in the epidermal layer (L1) of Arabidopsis thaliana SAM. The method is general enough to allow additional terms for nongeometric properties such as internal concentration gradients and mechanical tensile forces

    Tessellations and Pattern Formation in Plant Growth and Development

    Get PDF
    The shoot apical meristem (SAM) is a dome-shaped collection of cells at the apex of growing plants from which all above-ground tissue ultimately derives. In Arabidopsis thaliana (thale cress), a small flowering weed of the Brassicaceae family (related to mustard and cabbage), the SAM typically contains some three to five hundred cells that range from five to ten microns in diameter. These cells are organized into several distinct zones that maintain their topological and functional relationships throughout the life of the plant. As the plant grows, organs (primordia) form on its surface flanks in a phyllotactic pattern that develop into new shoots, leaves, and flowers. Cross-sections through the meristem reveal a pattern of polygonal tessellation that is suggestive of Voronoi diagrams derived from the centroids of cellular nuclei. In this chapter we explore some of the properties of these patterns within the meristem and explore the applicability of simple, standard mathematical models of their geometry.Comment: Originally presented at: "The World is a Jigsaw: Tessellations in the Sciences," Lorentz Center, Leiden, The Netherlands, March 200

    Using cellzilla for plant growth simulations at the cellular level

    Get PDF
    Cellzilla is a two-dimensional tissue simulation platform for plant modeling utilizing Cellerator arrows. Cellerator describes biochemical interactions with a simplified arrow-based notation; all interactions are input as reactions and are automatically translated to the appropriate differential equations using a computer algebra system. Cells are represented by a polygonal mesh of well-mixed compartments. Cell constituents can interact intercellularly via Cellerator reactions utilizing diffusion, transport, and action at a distance, as well as amongst themselves within a cell. The mesh data structure consists of vertices, edges (vertex pairs), and cells (and optional intercellular wall compartments) as ordered collections of edges. Simulations may be either static, in which cell constituents change with time but cell size and shape remain fixed; or dynamic, where cells can also grow. Growth is controlled by Hookean springs associated with each mesh edge and an outward pointing pressure force. Spring rest length grows at a rate proportional to the extension beyond equilibrium. Cell division occurs when a specified constituent (or cell mass) passes a (random, normally distributed) threshold. The orientation of new cell walls is determined either by Errera's rule, or by a potential model that weighs contributions due to equalizing daughter areas, minimizing wall length, alignment perpendicular to cell extension, and alignment perpendicular to actual growth direction

    A Burgessian critique of nominalistic tendencies in contemporary mathematics and its historiography

    Full text link
    We analyze the developments in mathematical rigor from the viewpoint of a Burgessian critique of nominalistic reconstructions. We apply such a critique to the reconstruction of infinitesimal analysis accomplished through the efforts of Cantor, Dedekind, and Weierstrass; to the reconstruction of Cauchy's foundational work associated with the work of Boyer and Grabiner; and to Bishop's constructivist reconstruction of classical analysis. We examine the effects of a nominalist disposition on historiography, teaching, and research.Comment: 57 pages; 3 figures. Corrected misprint

    Early outcomes in human lung transplantation with Thymoglobulin or Campath-1H for recipient pretreatment followed by posttransplant tacrolimus near-monotherapy

    Get PDF
    Objectives: Acute and chronic rejection remain unresolved problems after lung transplantation, despite heavy multidrug immunosuppression. In turn, the strong immunosuppression has been responsible for mortality and pervasive morbidity. It also has been postulated to interdict potential mechanisms of alloengraftment. Methods: In 48 lung recipients we applied 2 therapeutic principles: (1) recipient pretreatment with antilymphoid antibody preparations (Thymoglobulin [SangStat, Fremont, Calif] or Campath [alemtuzumab; manufactured by ILEX Pharmaceuticals, LP, San Antonio, Tex; distributed by Berlex Laboratories, Richmond, Calif]) and (2) minimal posttransplant immunosuppression with tacrolimus monotherapy or near-monotherapy. Our principal analysis was of the events during the critical first 6 posttransplant months of highest immunologic and infectious disease risk. Results were compared with those of 28 historical lung recipients treated with daclizumab induction and triple immunosuppression (tacrolimus-prednisone-azathioprine). Results: Recipient pretreatment with both antilymphoid preparations allowed the use of postoperative tacrolimus monotherapy with prevention or control of acute rejection. Freedom from rejection was significantly greater with Campath than with Thymoglobulin (P = .03) or daclizumab (P = .05). After lymphoid depletion with Thymoglobulin or Campath, patient and graft survival at 6 months was 90% or greater. Patient and graft survival after 9 to 24 months is 84.2% in the Thymoglobulin cohort, and after 10 to 12 months, it is 90% in the Campath cohort. There has been a subjective improvement in quality of life relative to our historical experience. Conclusion: Our results suggest that improvements in lung transplantation can be accomplished by altering the timing, dosage, and approach to immunosuppression in ways that might allow natural mechanisms of alloengraftment and diminish the magnitude of required maintenance immunosuppression. Copyright © 2005 by The American Association for Thoracic Surgery

    Exact Three Dimensional Casimir Force Amplitude, CC-function and Binder's Cumulant Ratio: Spherical Model Results

    Full text link
    The three dimensional mean spherical model on a hypercubic lattice with a film geometry L×2L\times \infty ^2 under periodic boundary conditions is considered in the presence of an external magnetic field HH. The universal Casimir amplitude Δ\Delta and the Binder's cumulant ratio BB are calculated exactly and found to be Δ=2ζ(3)/(5π)0.153051\Delta =-2\zeta (3)/(5\pi)\approx -0.153051 and B=2π/(5ln3[(1+5)/2]).B=2\pi /(\sqrt{5}\ln ^3[(1+\sqrt{5})/2]). A discussion on the relations between the finite temperature CC-function, usually defined for quantum systems, and the excess free energy (due to the finite-size contributions to the free energy of the system) scaling function is presented. It is demonstrated that the CC-function of the model equals 4/5 at the bulk critical temperature TcT_c. It is analytically shown that the excess free energy is a monotonically increasing function of the temperature TT and of the magnetic field H|H| in the vicinity of Tc.T_c. This property is supposed to hold for any classical dd-dimensional O(n),n>2,O(n),n>2, model with a film geometry under periodic boundary conditions when d3d\leq 3. An analytical evidence is also presented to confirm that the Casimir force in the system is negative both below and in the vicinity of the bulk critical temperature Tc.T_c.Comment: 12 pages revtex, one eps figure, submitted to Phys. Rev E A set of references added with the text needed to incorporate them. Small changes in the title and in the abstrac
    corecore